Isolation and characterization of kinase interacting protein 1, a pollen protein that interacts with the kinase domain of PRK1, a receptor-like kinase of petunia.
نویسندگان
چکیده
Many receptor-like kinases have been identified in plants and have been shown by genetic or transgenic knockouts to play diverse physiological roles; however, to date, the cytosolic interacting proteins of relatively few of these kinases have been identified. We have previously identified a predominantly pollen-expressed receptor-like kinase of petunia (Petunia inflata), named PRK1, and we have shown by the antisense RNA approach that it is required for microspores to progress from the unicellular to bicellular stage. To investigate the PRK1-mediated signal transduction pathway, PRK1-K cDNA, encoding most of the cytoplasmic domain of PRK1, was used as bait in yeast (Saccharomyces cerevisiae) two-hybrid screens of pollen/pollen tube cDNA libraries of petunia. A protein named kinase interacting protein 1 (KIP1) was found to interact very strongly with PRK1-K. This interaction was greatly reduced when lysine-462 of PRK1-K, believed to be essential for kinase activity, was replaced with arginine (the resulting protein is named PRK1-K462R). The amino acid sequence of KIP1 deduced from full-length cDNA contains an EF-hand Ca(2+)-binding motif and nine predicted coiled-coil regions. The yeast two-hybrid assay and affinity chromatography showed that KIP1 interacts with itself to form a dimer or higher multimer. KIP1 is present in a single copy in the genome, and is expressed predominantly in pollen with a similar temporal pattern to PRK1. In situ hybridization showed that PRK1 and KIP1 transcripts were localized in the cytoplasm of pollen. PRK1-K phosphorylated KIP1-NT (amino acids 1--716), whereas PRK1-K462R only weakly phosphorylated KIP1-NT in vitro.
منابع مشابه
Characterization of a pollen-expressed receptor-like kinase gene of Petunia inflata and the activity of its encoded kinase.
From a pollen tube cDNA library of Petunia inflata, we isolated clones encoding a protein with structural features and biochemical properties characteristic of receptor-like kinases. It was designated PRK1 for pollen receptor-like kinase 1. The cytoplasmic domain of PRK1 is highly similar to the kinase domains of other plant receptor-like kinases and contains nearly all of the conserved amino a...
متن کاملActors of necroptosis scenario in cell\'s scene
Necroptosis, as a novel concept, has been recently introduced in scientific literature. Much of our knowledge about necroptosis comes from ligation of tumor necrosis factor-α to its receptor, TNF receptor 1. Receptor-interacting protein kinase 1, receptor-interacting protein kinase 3 and its substrate, the pseudokinase mixed lineage kinase domain-like protein, have been comprehensively st...
متن کاملFMS-like Tyrosine Kinase-3 Mutation in a Child with Standard-risk ALL and Normal Karyotype
FMS-like tyrosine kinase-3 is a receptor tyrosine kinase expressed by immature hematopoietic cells and is important for the normal development of stem cells and the immune system. Mutations of FMS-like tyrosine kinase-3 have been detected in about 30% of patients with acute myelogenous leukemia and a small number of patients with acute lymphoblastic leukemia. The FMS-like tyrosine kinase-3 muta...
متن کاملIn vitro Interaction of HSV-1 ORF P with Both Thymidine Kinase (TK) and an Unidentified Cellular Protein
Herpes simplex virus type-1 (HSV-1) is a neurotropic pathogen of humans that establishes latent infection in the sensory ganglia innervating the site of primary infection. A number of genes control HSV-1 pathogenicity and latency. Open reading frame P (ORF P) is one of these genes that might have a role in latency and pathogenesis. A complication in the analysis of the role of ORF P in the HSV-...
متن کاملEffects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation
Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 126 4 شماره
صفحات -
تاریخ انتشار 2001